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1. Scoring of putative elution peaks by DIA-NN 

Characteristics (73 total) of the putative elution peaks (matched to the respective target or              
decoy precursor ions) scored by DIA-NN and used by the neural networks ensemble             
classifier are summarised in the following table: 

Ions co-elution (MS2 level)  

Pearson correlations of top 12 fragments’ 
elution profiles (fragments ordered by their 
reference library intensities) with the 
smoothed elution profile of the “best” 
fragment 

12 scores 

Sum of these correlations for the top 6 
fragments; calculated for chromatograms 
extracted at the base mass accuracy as well 
as 0.45 and 0.2 of the base mass accuracy 

3 scores 

Sum of these correlations for the rest of the 
fragments, without normalisation and 
normalised by the number of these extra 
fragments 

2 scores 

Sum of these correlations for the 3 b-series 
charge 1 fragments of the precursor with 

1 score; library-free search only 



highest correlations (among all such b-series 
fragments) 

Sum of such correlations for the top 6 
fragments with elution profiles x() first 
processed using the x(scan) -> min(x(scan - 
1), x(scan), x(scan + 1)) replacement 

1 score; this score is included, as it might be 
beneficial when using overlapping window 
workflows, i.e. if isolation windows are 
shifted, e.g. by half window width, in each 
subsequent cycle 

Correlation between the elution profile at 
the m/z value that corresponds to the 
non-fragmented precursor and the smoothed 
elution profile of the “best” fragment 

1 score 

Ions co-elution (MS1 level)   

Pearson correlations of the smoothed elution 
profile of the “best” fragment with the MS1 
elution profiles extracted using the base 
mass accuracy as well as 0.45 and 0.2 of the 
base mass accuracy 

3 scores 

Isotopologue ions co-elution Use of these scores can be turned off by 
the user, e.g. if a C13-depleted sample is 
being analysed 

Pearson correlations of the smoothed elution 
profile of the “best” fragment with the MS1 
elution profiles corresponding to the peptide 
featuring 1, 2 or 3 C13 

3 scores 

Sum of Pearson correlations of elution 
profiles corresponding to the top 6 
fragments featuring one C13 with the 
smoothed elution profile of the “best” 
fragment 

1 score 

Pearson correlations of elution profiles 
corresponding to the top 6 fragments, from 
masses of which (C13 - C12) mass was 
subtracted, with the smoothed elution 
profile of the “best” fragment 

6 scores; these scores would reflect it if the 
fragments observed were actually heavy 
isotopologues of some fragments with lower 
monoisotopic masses, thus being unlikely to 
belong to the peptide 

Sum of these correlations 1 score 



Total signal  

Natural logarithm of the sum of the areas 
below the elution curves of the top 6 
fragments multiplied by the respective 
correlations with the smoothed elution 
profile of the “best” fragment 

1 score 

Measured relative fragment intensities  

Cosine similarity measure (itself and to 
power 3) between the predicted and 
measured intensities of the top 6 fragments 
weighted by the squared values of the 
smoothed “best” fragment elution curve at 
the respective time points 

2 scores 

Relative intensities of the top 6 fragments 6 scores 

Mass accuracy (MS2)  

Measured mass accuracy of the top 6 
fragments at the elution apex weighted by 
the Pearson correlations of the respective 
elution curves with the smoothed elution 
curve of the “best” fragment 

6 scores 

Retention time (RT)  

Retention time apex 1 score 

Square root of the absolute difference      
between measured and predicted retention     
times 

1 score 

Elution profile shape  

The chromatogram scanning window is split      
into five segments and relative total      
intensities are calculated for the “best”      
fragment for these segments 

5 scores 

Presence of other putative elution peaks  



Sum of the Pearson correlations between the       
elution profiles of the top 6 fragments and        
the smoothed elution profile of the “best”       
fragment, from which the maximum of such       
correlation sums for all putative elution      
peaks considered has been subtracted 

1 score 

log(max(1.0, s) / (S + 1.0)), where s is the          
sum of the Pearson correlation between the       
elution profiles of the top 6 fragments and        
the smoothed elution profile of the “best”       
fragment, and S is the sum of such        
correlation sums for all putative elution      
peaks 

1 score 

Library characteristics of the precursor  

Library intensities of the fragments 2 to 12        
(fragments ordered by their reference library      
intensities) relative to the top fragment 

11 scores 

precursor m/z 1 score 

precursor charge 1 score 

precursor length 1 score 

number of library fragments 1 score 

 

 

2. The use of non-project specific spectral libraries with DIA-NN 

DIA data are increasingly analysed with publicly available spectral libraries, not necessarily            

generated on the same LC-MS setup. This happens when the creation of a project-specific              

spectral library of comparable depth is not possible due to low amounts of sample available,               

or the efforts to create a specific library are not justified in view of the aims of a particular                   

experiment. At the same time, a publicly available library can sometimes be expected to yield               

better performance than a library-free analysis, e.g. when the samples have been analysed             

with a very short chromatographic gradient. To demonstrate the performance of DIA-NN in             

this situation, we used the same human-maize spectral library, as utilised to obtain Figure 1B,               



to analyse four consecutive injections of human myelogenous leukemia cell line K562            

proteomic preparation (online Methods) analysed on a different LC-MS setup (microflow           

HPLC coupled to TripleTOF 6600 (Sciex)). A fast (19 minute) chromatographic gradient was             

used. These acquisitions were processed with Spectronaut Pulsar and DIA-NN using the            

default settings as well as with the neural network classifier and the removal of potentially               

interfering precursors disabled (Supplementary Fig. SN2.1A). Protein inference and FDR          

filtering were turned off, to obtain complete reports, “Unrelated runs” option was checked in              

the DIA-NN settings. A two-species human-maize spectral library method was used to            

estimate the effective FDR, as when generating Figure 1B (online Methods).  

This example illustrates that non-project specific libraries are effectively used by DIA-NN,            

even if they have been recorded on a different mass spectrometer and LC setup. Moreover,               

the example illustrates that DIA-NN consistently retains ID performance; the tool was able to              

identify several times more precursors at strict FDR compared to Spectronaut. The use of              

neural networks classifier enables DIA-NN to achieve effective FDR as low as 0.2% in this               

test. The algorithm that removes interfering precursors, on the other hand, not only improves              

the identification performance at strict FDR thresholds, but also substantially affects the            

internal FDR estimates of DIA-NN, bringing them in close agreement with FDR estimates             

obtained using the two-species library method. We note that in this benchmark DIA-NN             

identifies more precursors at 1% FDR from a 19 minute microflow gradient than what was               

achieved recently with 120 minute nanoflow gradient1. This highlights the promise fast            

gradients now hold for high-throughput proteomics, with the development of new fast            

instruments and advanced software, such as DIA-NN. We also evaluated the degree to which              

the internal FDR estimates of DIA-NN might be affected by potential overfitting by neural              

networks, and concluded that at least in this benchmark the effect is either nonexistent or               

negligible (Supplementary Fig. SN2.1B). 

 

https://paperpile.com/c/MeukFx/ehxfp


 

 

Supplementary Fig. SN2.1. (A) Efficient peptide identification with non-project specific          
spectral libraries in high-throughput proteomics. DIA-NN with default settings, with          
neural networks classifier disabled (“DIA-NN (linear)”) and with removal of interfering           
precursors disabled (“DIA-NN (interfering precursors)”) benchmarked against Spectronaut        
Pulsar using four consecutive injections of human myelogenous leukemia cell line K562            



proteome preparations analysed with a 19 minute microflow chromatographic gradient          
recorded on a TripleTOF 6600 (Sciex) mass spectrometer. Processing was performed with a             
(non-project-specific) two-species human-maize spectral library (online Methods), generated        
on a Q Exactive HF coupled with a nanoLC (the same library was used to produce Figure                 
1B). Identification numbers (large points, left y-axis) and internal FDR estimates (small            
points, right y-axis) are plotted against the estimates of the effective FDR using the              
two-species method (online Methods). DIA-NN substantially outperforms Spectronaut at         
strict FDR (<2%), identifying several times more precursors, and demonstrates more accurate            
internal FDR estimates. (B) Single training epoch (default) is unlikely to lead to             
overfitting. We benchmarked the performance of DIA-NN when training the neural network            
for a single epoch (default) or up to 10 epochs. We observe that some overfitting starts being                 
noticeable only at about 10 epochs (manifested as slightly optimistic FDR estimates), but             
even 10 epochs are not enough to cause a substantial change in the accuracy of FDR                
estimates. We also observe that the performance measured with the use of a two-species              
human-maize spectral library is not affected by the number of training epochs, indicating that              
the choice of only a single epoch as the default setting is sensible, at least for this kind of                   
data. 

 

3. Performance benchmark of DIA-NN’s quantification algorithms 

In this section we use LFQbench to evaluate the effectiveness of DIA-NN’s quantification             

algorithms (Supplementary Fig. SN3.1). We see that while cross-run selection of fragments            

for quantification does not have a noticeable impact on quantification accuracy in this test,              

the removal of interferences from fragment elution profiles significantly improves          

quantification of low-abundant peptides, resulting in more accurate quantification ratios          

between different species lysate mixtures (A and B). We also provide an illustration of the               

way interference removal works (Supplementary Fig. SN3.2; see Methods for the algorithmic            

details). 

 

Supplementary Fig. SN3.1. Performance of DIA-NN’s quantification algorithms.        
LFQbench peptide ratio plots for DIA-NN in the default configuration (left), with the             
cross-run selection of fragments for quantification disabled (middle) and with removal of            
interferences from fragments’ elution profiles also disabled (right). In box and whisker plots,             



boxes correspond to interquartile ranges and whiskers to 1-99 percentiles; n = 15743             
(human), 3755 (yeast), 4997 (E.coli). 

 

Supplementary Fig. SN3.2. Removal of interferences from fragments’ elution curves by           
DIA-NN. Chromatograms (LFQbench test, acquisition 1A) for an E.coli peptide are plotted            
before (dotted lines) and after (solid lines) interference correction. DIA-NN assumed that the             
third library fragment (m/z 487.299, blue elution curve) was representative of the true elution              
curve of the peptide, and used its extracted elution profile to remove interferences from the               
extracted elution profiles of other fragments. 

 

4. Benchmark of DIA-NN against Specter2. 

We also compared the identification performance of DIA-NN with that of Specter, using the              

benchmark method from the original manuscript2. To do this, we employed the HEK293T             

dataset (with spiked-in synthetic peptides; PXD006722 ProteomeXChange repository) and         

the two-species spectral library (human - E.coli) described previously2 (Supplementary Fig.           

SN4.1). Of note, we used the identification numbers reported for Specter therein (Figure 3a2),              

meaning that the parameters of Specter were optimised by the Specter authors themselves.  

https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/Kcmly


 

Supplementary Fig. SN4.1. Comparison of the identification performance of DIA-NN and           
Specter. DIA-NN was used to reanalyse the three HEK293T injections (with spiked-in            
synthetic peptides; “6.75ng”, acquired using a 53 min chromatographic gradient on Q            
Exactive HF Plus) described previously2 with the respective project-specific spectral library           
concatenated with an E.coli spectral library2. The libraries were converted from the .blib             
(Skyline) format to a simple text format using the Specter code; DIA-NN was then used to                
annotate the fragments (with mass accuracy set to 5 ppm, maximum fragment charge set to 2,                
and H2O as well as NH3 neutral losses allowed) and exclude precursors with less than 6                
fragments annotated (generating a library of 28633 HEK293T + synthetic precursors and            
47261 E.coli precursors). Analysis using the resulting library was performed with the default             
DIA-NN settings, except the precursor q-value threshold was set to 0.01% (i.e. 0.0001). The              
numbers of cumulatively identified in three technical replicates precursors were then           
calculated. The respective numbers for Specter were taken out of the Specter original             
manuscript2. DIA-NN identified more than 2x greater number of precursors with estimated            
effective FDR (proportional to the ratio of the number of reported E.coli identifications and              
the number of all identifications) being over two orders of magnitude (155x) lower. 

 

5. Consistency of the neural networks classifier 

DIA-MS proteomics is known for its high consistency of identification, leading to fewer             

missing values in comparison to DDA-based approaches. Here we show that the use of a deep                

neural networks (DNNs) classifier does not have a negative impact on the identification             

consistency when analysing multiple acquisitions. To demonstrate this, we used 364 yeast            

proteomes generated by us previously3 (PXD010529 ProteomeXChange repository) and         

analysed this dataset using a spectral library generated from DIA data (as described below,              

see Supplementary Note 10) at 1% q-value (as reported by DIA-NN), with the DNNs enabled               

and disabled (Supplementary Fig. SN5.1). 

https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/Kcmly
https://paperpile.com/c/MeukFx/VNwHy


We note that these data were acquired on a previous generation instrument (Sciex TripleTOF              

5600) with a workflow optimised to provide high precision of quantification for            

highly-abundant enzymes, without regard for the identification performance4. The         

identification numbers are thus lower than what is possible now, e.g. with a modern              

workflow used to generate Supplementary Fig. SN10.1. 

 

Supplementary Fig. SN5.1. The use of the deep neural networks does not have a negative               
impact on identification consistency. The number of missing values (out of 364            
acquisitions) plotted against the numbers of precursors (left) and proteins (right; only            
uniquely identified proteins considered) with deep neural networks classifier enabled (black)           
and disabled (orange). The respective mean identification numbers are indicated with vertical            
lines.  

 

6. Hardware requirements, speed and GUI 

The rising interest in high-throughput proteomics in research, medicine and industry calls for             

the development of software tools that are able to rapidly and reliably analyse thousands of               

mass spectrometry acquisitions. DIA-NN performs the computationally-demanding       

processing steps separately for each acquisition in the experiment, saving all the relevant             

information to compact files on the hard drive. This allows quick and flexible analysis and               

subsequent reanalysis of any part of the experiment separately. DIA-NN is also very fast              

(Supplementary Table SN6.1).  

https://paperpile.com/c/MeukFx/h79dc


 

Supplementary Table SN6.1. Processing speed of DIA-NN. Time and computer memory           
amount required by DIA-NN (both panels) and Spectronaut (upper panel) to process the             
datasets featured in the respective Figures from the present manuscript. The data for             
Spectronaut (unlike for DIA-NN) does not include the time required for report generation.             
Benchmarks were conducted using a PC based on 2x Xeon X5650 (2x 6-core, 2.67GHz)              
under Windows 7, RAM usage was measured using the Windows Task Manager, results were              
rounded to two significant figures. 

 

For large scale applications, we provide a command line tool, which can be used to set up                 

automatic processing workflows. For smaller or more routine applications, we have further            

programmed a graphical user interface (GUI) wrapper, that enables the control of all steps of               

the workflow from a simple and intuitive workspace (Supplementary Fig. SN6.2). Although            

DIA-NN is designed to do as much as possible automatically, it is fully configurable,              

allowing to fine-tune the processing workflow for a specific experiment. The GUI is             

implemented as a wrapper for the command line tool, and thus allows to easily set up the                 

analysis in few clicks without losing the powerful tuning capabilities of the command line              

tool: the GUI is capable of carrying out any task supported by the command-line tool,               

provided it involves analysis (of an arbitrary number of experiments) using parameters and             

input files defined by the user. The command line tool, however, can also be invoked (by                

custom scripts) using dynamically-generated data, e.g. it can be used to convert or process              

“on the fly” the raw data files being acquired by the LC-MS. 



 

Supplementary Fig. SN6.2. DIA-NN graphical user interface. DIA-NN allows to control           
the full workflow from a simple to use and intuitive graphical user interface (GUI). The GUI                
supports fully automatic processing, but also allows to fine-tune the algorithm. Pipelines can             
be constructed to automatically process multiple experiments with different settings. 
 

7. Performance of DIA-NN in the LFQbench test 

While the identification performance is important, so far the key application of DIA is              
accurate, precise and consistent peptide and protein quantification in large sample series. We             
illustrated the quantification performance of DIA-NN by comparing it to Spectronaut Pulsar            
using the LFQbench test5 (HYE110 dataset, 64 variable window acquisition scheme on            
TripleTOF 6600) (Supplementary Fig. SN7.1). In this benchmark, human, yeast, and E.coli            
lysates were mixed in different proportions and analysed via SWATH-MS. For each mixture,             
three injection replicates were measured. The performance of the software tools was            
compared using the LFQbench R package (https://github.com/IFIproteomics/LFQbench),       
which takes as input the intensities of the precursor ions and uses these to quantify peptides                
and proteins. Q-value threshold was set to 1% (note that actual FDR might differ              
substantially for DIA-NN and Spectronaut in this test, as these tools have different FDR              
estimation algorithms). The default settings were used for DIA-NN and Spectronaut, except            
that protein inference and FDR filtering of the output were turned off to obtain complete               
reports. 

https://paperpile.com/c/MeukFx/wK90Y


 

Supplementary Fig. SN7.1. Performance of DIA-NN in the LFQbench test (Complete           
Figure, of which an extract is shown in Figure 2). LFQbench performance of DIA-NN in               
comparison to Spectronaut. In the LFQbench test, two peptide preparations (yeast and E.coli)             
are mixed in two different proportions (A and B), pooled with a human peptide preparation               
and analysed in triplicates on TripleTOF 66005 (64-variable windows acquisition, HYE110           
dataset). The data were processed at 1% precursor q-value; peptide (top panel) and protein              

https://paperpile.com/c/MeukFx/wK90Y


(middle panel) ratios between the mixtures were visualised using the LFQbench R package             
(with the dashed lines indicating the expected ratios). DIA-NN demonstrates significantly           
better quantification precision for both yeast and E.coli peptides and proteins, as evidenced             
by the box plots for the ratios (boxes: interquartile range, whiskers: 1-99 percentile; n =               
15442 and 15743 (human), 3403 and 3755 (yeast), 4494 and 4997 (E.coli) for peptide ratios               
obtained from the reports of Spectronaut and DIA-NN, respectively; n = 1921 and 1950              
(human), 529 and 550 (yeast), 566 and 616 (E.coli) for protein ratios obtained from the               
reports of Spectronaut and DIA-NN, respectively). DIA-NN also produced better median CV            
values for human peptides and proteins: 5.6% and 3.0%, respectively, compared to 7.0% and              
3.8% for Spectronaut, as calculated by the LFQbench R package. Bottom panel: numbers of              
valid A:B ratios produced on the peptide and protein level. 

 

8. Library-free processing 

DIA-NN can process raw data using either a spectral library or a protein sequence database.               
In the latter case, proteins are in silico digested and prediction of the fragmentation spectra of                
the resulting peptides as well as the respective retention times is performed (Methods).             
Further processing is done by the same algorithms as in the spectral library-based search,              
meaning that DIA-NN’s library-free module is largely a peptide-centric search tool, similarly            
to PECAN6, in contrast to e.g. DIA-Umpire7, which utilises a spectrum-centric approach.  

While the spectral library-based search achieves higher proteomic depth, the library-free           
approach saves sample material and the instrument time. We benchmarked the library-free            
performance of DIA-NN using HeLa proteome analyses obtained with different          
chromatographic gradient lengths8 (Supplementary Fig. SN8.1). Library-free processing was         
carried out against the human UniProt9 canonical proteome (3AUP000005640). To          
demonstrate the benefit of restricting the search space, the data were also processed with the               
same sequence database but filtered to include only peptides known to be present in human               
samples, according to the PeptideAtlas10 build of January 2018; for this, the maximum             
peptide length was set to 100 and up to five missed cleavages were allowed. An E.coli                
spectral library8 was used to train the peptide fragmentation and retention time predictors. A              
project-specific spectral library8 was used for library-based processing.  

https://paperpile.com/c/MeukFx/ZeLYx
https://paperpile.com/c/MeukFx/jw4ce
https://paperpile.com/c/MeukFx/WXObO
https://paperpile.com/c/MeukFx/omHPS
https://paperpile.com/c/MeukFx/vyiGY
https://paperpile.com/c/MeukFx/WXObO
https://paperpile.com/c/MeukFx/WXObO


 

Supplementary Fig. SN8.1. Library-free performance of DIA-NN. The numbers of          
precursors identified at 1% q-value threshold, as reported by DIA-NN for HeLa acquisitions             
on Q Exactive HF as a function of chromatographic gradient length. 

 

To validate the library-free performance of DIA-NN, we used the LFQbench5 dataset, as             

when generating Figure 2 and Supplementary Fig. SN7.1. However, instead of using the             

DDA-based spectral library provided, we employed a library-free workflow. In general, we            

would recommend creating a spectral library directly from DIA data acquired on the same              

LC-MS setup using gas-phase fractionation. However, as such a library is not available for              

the LFQbench dataset, we utilised a two-step procedure analogous to the approach suggested             

for DIA-Umpire7. To do this automatically, we employed the pipeline capability of the             

DIA-NN GUI. First, DIA-NN was used to produce a spectral library from the 6 acquisitions               

included in the LFQbench dataset, by searching against the human, yeast and E.coli UniProt9              

canonical proteomes (with the respective IDs 3AUP000005640, 3AUP000002311 and         

3AUP000000625) at the same time (the LFQbench spectral library was used to train the              

peptide fragmentation and retention time predictors). The same acquisitions were then           

reanalysed with this library. The q-value threshold was set to 0.5% at the precursor level for                

both of these steps. Quantification performance was assessed using the LFQbench R package.             

For comparison, we also performed directDIA analysis of the same dataset with Spectronaut             

with its default settings. Default q-value filtering (1% precursor level and 1% protein level)              

was used for Spectronaut, as we found that relaxing it in library-free mode has a detrimental                

effect on the performance of Spectronaut. We note that similarly to the two-step DIA-NN              

workflow, Spectronaut also enhances identification performance by processing multiple         

https://paperpile.com/c/MeukFx/wK90Y
https://paperpile.com/c/MeukFx/jw4ce
https://paperpile.com/c/MeukFx/omHPS


acquisitions at once, reporting more identifications than when processing the same           

acquisitions separately. LFQbench R package was directly used to analyse the reports of             

DIA-NN and Spectronaut, with the respective protein names columns used to infer the             

species for each precursor. 

Our results (Supplementary Fig. SN8.2A) demonstrate that DIA-NN identifies substantially          

more peptides in this library-free workflow than when using the spectral library generated by              

Navarro et al5 (cf. Supplementary Fig. SN7.1). DIA-NN also identifies substantially more            

human peptides than Spectronaut, while the median CVs were reported to be 7.2% for both               

DIA-NN and Spectronaut, i.e. DIA-NN is able to quantify substantially more peptides at the              

same precision. These results are thus in line with the superior quantification capabilities of              

DIA-NN demonstrated when using a DDA-based spectral library (Figure 2 and           

Supplementary Fig. SN7.1). 

We also plotted the A:B ratios for proteins uniquely identified by DIA-NN and Spectronaut              

(Supplementary Fig. SN8.2A, middle panel). For this, the reports produced by DIA-NN and             

Spectronaut were filtered to include only precursors matched (by their respective protein            

grouping algorithms) to a single protein. Such filtering is often performed in practice, with              

precursors associated with multiple proteins being discarded. In this test, DIA-NN quantified            

more human, yeast and E.coli proteins, while demonstrating better quantification          

performance (Supplementary Fig. SN8.2A). Of note, the numbers of valid protein ratios            

obtained in this test should not be directly compared to those obtained previously: when              

analysing with a DDA-based library (Supplementary Fig. SN7.1) it was protein groups, rather             

than unique proteins, that were counted. 

Finally, we validate the advantage of neural networks over the linear classifier in library-free              

mode (Supplementary Fig. SN8.2B).  

https://paperpile.com/c/MeukFx/wK90Y


 



 

Supplementary Fig. SN8.2. (A) Library-free performance of DIA-NN in the LFQbench           
test. Quantification ratios between A and B species mixtures for library-free analysis of the              
LFQbench dataset by Spectronaut (left) and DIA-NN (right) plotted at the levels of peptides              
(top panel) and uniquely identified proteins (middle panel). Library-free search was           
performed against the UniProt9 canonical proteomes 3AUP000005640 (human),        
3AUP000002311 (yeast) and 3AUP000000625 (E.coli). Peptide ratios between the mixtures          

https://paperpile.com/c/MeukFx/omHPS


were visualised using the LFQbench R package (boxes: interquartile range, whiskers: 1-99            
percentile; n = 17656 and 25831 (human), 5732 and 5151 (yeast), 6168 and 5611 (E. coli) for                 
peptide ratios obtained from the reports of Spectronaut and DIA-NN, respectively; n = 1230              
and 2922 (human), 587 and 626 (yeast), 626 and 675 (E.coli) for protein ratios obtained from                
the reports of Spectronaut and DIA-NN, respectively). Bottom panel: the respective numbers            
of valid ratios. (B) Neural networks improve DIA-NN’s performance in library-free           
mode. LFQbench dataset was analysed by DIA-NN in library-free mode with neural            
networks disabled (2% q-value filtering) and enabled (0.5% q-value filtering, as in A). The              
q-value threshold of 2% was chosen to keep the resulting library size less than when using                
neural networks and filtering at 0.5% (50032 vs 52912 precursors in the generated library,              
respectively). This way we expected the advantage of neural networks to manifest as             
simultaneously slightly higher number of valid A:B ratios obtained for the peptides as well as               
several times lower number of grossly incorrect ratios, which are expected to be indicative of               
false identifications. This is indeed the case. The top panel corresponds to the peptide ratio               
plots and middle panel to ratio distributions, as generated by LFQbench R package for              
DIA-NN without neural networks (left) and with neural networks (right). Peptide ratios            
between the mixtures were visualised using the LFQbench R package (boxes: interquartile            
range, whiskers: 1-99 percentile; n = 23893 and 25831 (human), 4476 and 5151 (yeast), 4861               
and 5611 (E.coli), without and with neural networks, respectively). The bottom panel            
presents the numbers of valid ratios. 

 

9. Precursor ions removed from the human-maize spectral library 

The following peptides were removed from the two-species human-maize spectral library, in            
order to facilitate its import into Skyline. Peptide modifications are encoded in the UniMod              
format, precursor charges are indicated with a number following the amino acid sequence. 

UniMod:1)M(UniMod:35)M(UniMod:35)GHRPVLVLSQN(UniMod:7)TK3 

(UniMod:1)SADGAEADGSTQVTVEEPVQQ(UniMod:7)PSVVDR3 

(UniMod:1)SAPLDAALHALQEEQ(UniMod:7)AR2 

(UniMod:1)SELDQLRQEAEQ(UniMod:7)LK2 

(UniMod:1)SELEQ(UniMod:7)LRQEAEQ(UniMod:7)LR2 

(UniMod:1)SELEQLRQEAEQ(UniMod:7)LR2 

(UniMod:1)SGEENPASKPTPVQDVQ(UniMod:7)GDGR2 

(UniMod:1)SHVAVENALGLDQ(UniMod:7)QFAGLDLNSSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQ(UniMod:7)FAGLDLNSSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLN(UniMod:7)SSDNQSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLNSSDN(UniMod:7)QSGGSTASK3 

(UniMod:1)SHVAVENALGLDQQFAGLDLNSSDNQ(UniMod:7)SGGSTASK3 

(UniMod:1)SKPHSEAGTAFIQTQQ(UniMod:7)LHAAMADTFLEHM(UniMod:35)C(UniMod:4)R5 

(UniMod:1)SLIC(UniMod:4)SISNEVPEHPC(UniMod:4)VSPVSN(UniMod:7)HVYER3 

(UniMod:1)SQ(UniMod:7)DGASQFQ(UniMod:7)EVIR2 

(UniMod:1)SQDGASQFQ(UniMod:7)EVIR2 

(UniMod:1)STGTFVVSQPLN(UniMod:7)YR2 

(UniMod:1)STLLINQPQ(UniMod:7)YAWLK2 

(UniMod:1)STNEN(UniMod:7)ANTPAAR2 



(UniMod:1)STNENAN(UniMod:7)TPAAR2 

(UniMod:1)STSVPQGHTWTQ(UniMod:7)R2 

(UniMod:1)TSALENYIN(UniMod:7)R2 

(UniMod:1)TTQQ(UniMod:7)IDLQGPGPWGFR2 

(UniMod:1)TTYLEFIQQ(UniMod:7)NEER2 

 

10. Generating spectral libraries with DIA-NN 

DIA-NN can generate spectral libraries directly from DIA data. Here, we demonstrate its             

capabilities using a workflow optimised for high-throughput proteome quantification based          

on 21 to 23-minute gradient microflow SWATH11 applied on yeast and human plasma             

proteomes (Supplementary Fig. SN10.1). Briefly, Sciex TripleTOF 6600 was used to rapidly            

analyse yeast and human plasma tryptic digests (three injections each; see the detailed             

workflow description in the online Methods section). Furthermore, a set of SWATH            

gas-phase fractionation acquisitions with narrow precursor isolation windows was acquired          

for each of the digests. DIA-NN was used to create DIA-based spectral libraries directly from               

these gas-phase fractionation acquisitions. For the yeast library, a search against the yeast             

UniProt9 canonical proteome was used (3AUP000002311). For the plasma library, the           

acquisitions were searched against the human UniProt canonical proteome         

(3AUP000005640) filtered for the peptides known to be present in human plasma, according             

to the PeptideAtlas10 build of August 2013; for this, the maximum peptide length was set to                

100 and up to five missed cleavages were allowed. The numbers of proteins uniquely              

identified in all three technical replicates at 1% q-value (i.e. using peptides specific to the               

respective genes) were then calculated, as well as the numbers of these with coefficients of               

variation (CV) less than the specified thresholds. Yeast acquisitions were also analysed by             

DIA-NN directly, without the DIA-based spectral library. For the initial analysis of the yeast              

gas-phase fractionation acquisitions, which was performed at 0.2% precursor q-value, an           

E.coli spectral library8 was used to train the peptide fragmentation and retention time             

predictors, with the “Optimise for training” option selected in the DIA-NN GUI.            

Subsequently, all library-free processing was performed using the newly generated library,           

specific to our LC-MS setup, to train the predictors. The 1% precursor q-value threshold was               

used for the rest of the analyses. 

 

https://paperpile.com/c/MeukFx/EL9eF
https://paperpile.com/c/MeukFx/omHPS
https://paperpile.com/c/MeukFx/vyiGY
https://paperpile.com/c/MeukFx/WXObO


 

Supplementary Fig. SN10.1. Using DIA-NN to analyse yeast and human plasma SWATH            
acquisitions without a DDA-based spectral library. DIA-NN was used to analyse yeast            
(23-minute gradient) and human plasma (21-minute gradient) triplicate acquisitions using          
spectral libraries generated by DIA-NN from gas-phase fractionation acquisitions. A          
library-free analysis of the same yeast acquisitions was added for comparison. Only uniquely             
identified proteins (i.e. using proteotypic peptides only), detected in all three replicates, were             
considered (filtered at 1% precursor-level and 1% protein-level q-value). 
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